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Abstract: We derive a new model and simulation technique called 
“Dynamic Multimode Analysis (DMA)” to simulate the 3-dimensional 
dynamic behavior of a laser. A Gaussian mode analysis is used to obtain 
resonator eigenmodes taking into account thermal aberrations. These modes 
are coupled by a set of rate equations to describe the dynamic behavior of 
the individual modes for cw and Q-switched lasers. Our approach analyzes 
mode competition and provides a detailed description of the laser beam in 
terms of output power, beam quality factor M

2
, and pulse shape. 

Comparison of experimental data with our simulation results provides new 
insight into the effect of mode competition and the operation of Q-switched 
lasers. 

©2009 Optical Society of America 

OCIS codes: (140.3295) Laser beam characterization; (140.3410) Laser resonators; (140.3430) 
Laser theory; (140.3540) Lasers, Q-switched; (350.6830) Thermal lensing. 
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1. Introduction 

The performance of a laser depends on the complicated interaction of a number of physical 
effects such as dynamic behavior of population inversion, thermal lensing, and mode 
competition. For successful resonator design, accurate simulations which provide a 
quantitative understanding of these effects are important. So far, mainly two methods are used 
to model solid state laser resonators: the Gaussian mode approach [1,2] in combination with 
scalar rate equations [2,3], and the beam propagation method (BPM) based on the Fox and Li 
principle [4]. 

The Gaussian mode approach is most common, but in its present use it is not able to 
predict mode superposition and competition. The latter means that different transverse modes 
simultaneously overlap with the gain distribution in the active medium and are amplified 
depending on their relative intensity and the resulting gain saturation (see Chapter 25.4 in [2]). 
Therefore, for approaches which do not include this effect, it is necessary to know the beam 
structure in advance to solve the rate equations. In less complicated cases, such as 
fundamental mode operation, such approaches have been used to predict pulse duration and 
peak power of a Q-switched laser [2,5,6] including passive Q-switching and intra-cavity 
frequency conversion [7]. However, a detailed time-dependent analysis of pulse shape and 
beam structure could not be carried through. 

The BPM approach basically is a time-independent approach. Since just one wave front is 
propagated forth and back in the cavity, the full 3D interaction of the electrical field with the 
laser active medium cannot be analyzed dynamically. Attempts to propagate several wave 
fronts simultaneously are computationally elaborate. 

In this paper we present a new approach using a “Dynamic Multimode Analysis” to 
compute mode superposition and competition, laser output power, beam quality, and pulse 
shape. For this purpose the common set of rate equations is extended to a set of multimode 
rate equations, which involves specific rate equations for the individual transverse modes 
being excited in the cavity. Using this extended set of rate equations, we describe the optical 
wave as a dynamic superposition of several eigenmodes. For the computation of these 
eigenmodes we considered two options, both of them taking into account thermal effects by a 
thermal finite element analysis (FEA) using absorbed pump power density and cooling 
configuration as input. 

The most accurate approach to compute the eigenmodes is a FEA of the electromagnetic 
field in the cavity. In [8,9] it was explained how such a FEA can be accomplished. However, 
this approach is connected with a high numerical effort. Therefore, to reduce the 
computational time, we used a Gaussian mode approach in combination with a transverse 
parabolic fit applied to the 3D results of the thermal FEA. The results, presented in Section 4, 
show that this already leads to reliable results for end pumped laser systems. A set of 
multimode rate equations was first presented in [10] where the required assumptions were 
discussed on a more mathematical level. The current work is a further development of this 
idea applied to real laser cavities, including thermal lensing and Q-switching. All 
computations have been implemented and performed in LASCAD [11]. 
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2. Model 

2.1 Definitions 

Let us assume that 
2

[0, ]
D res

lΩ = Ω ×  is the domain of a laser resonator with length 
res

l (see 

Fig. 1). Furthermore, let 
a

Ω  be the domain of the active medium, i.e. the laser crystal. The 

length and the refractive index of the active medium are denoted by 
cryst

l  and 
cryst

n . 

 

Fig. 1. Resonator sketch. 

In case of a Q-switched laser, let 
q

Ω  be the domain of the Q-switch, 
q

l  its length, and 
q

n  

its refraction index. To describe our model, we use the following abbreviations: 
• speed of light in vacuum: c, 

• optical path length of the resonator: ( 1) ( 1)
opt cryst cryst q q cryst

l n l n l l= − + − + , 

• round trip time: 
2 opt

r

l

c
τ = , 

• reflectivity of the output mirror: 
r

r , 

• output reflection rate: log( )
r

R r= − , 

• round trip loss: 
rtrip

L , 

• (logarithmic) resonator loss: 
Res rtrip

L L R= + , 

• stimulated emission cross section: σ , 

• resonator life time: r

c

Res
L

τ
τ = , 

• fluorescence decay time of the upper laser level: 
f

τ , 

• doping density of ions which are responsible for the laser process: 
tot

N , 

• space-dependent pumping rate: ( )
p

R x
�

. 

Note that in case of Q-switching, 
c
τ  is a time-dependent function. Furthermore, 

c
τ  can be 

used to describe different kind of losses in the resonator, like losses caused by apertures or 
Gaussian output mirrors. This will be explained in a subsequent paper. 

2.2 Space-dependent rate equations 

2.2.1 Rate equations for general field distributions 

In case of a 4-level laser system, the dynamic behavior of the laser usually is described by the 

following rate equations for the population inversion density ( , )N t x
�

 and the total photon 

number in the cavity ( )tΦ  [3]: 

resl

 

active 
medium 

aΩ  

 
Q-switch 

cryst
l  

q
l  

2DΩ  

left mirror right mirror  
(output coupler) 
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( )( , ) ( , )

( , ) ( , ) ( , ) ,tot

p

f tot

N NN t x N t x
W t x N t x R t x

t Nτ

−∂
= − − +

∂

� �
� � �

  (1) 

 
( ) ( )

( , ) ) . ( ,
a

c

t t
W t x N t x dV

t τΩ

∂Φ Φ
= −

∂ ∫
� �

  (2) 

The interaction between the optical wave and the active laser material is determined by the 

stimulated emission ( , )W t x
�

 given by 

 ( , ) ( , ),
cryst

c
W t x t x

n

σ
ρ

ω
=

� �

ℏ
  (3) 

where ( , )t xρ
�

 denotes the energy density. The photon number (t)Φ  and the energy density 

( , )t xρ
�

 are connected by 

 
1

( ) ( , )t t x dxρ
ω Ω

Φ = ∫
� �

ℏ
.  (4) 

The rate Eqs. (1) and (2) provide a comprehensive description of laser dynamics if the 

energy density ( , )t xρ
�

 is known. However, it is not possible to compute ( , )t xρ
�

 by these 

equations. 
In this paper, we propose to solve this problem by a “Dynamic Multimode Analysis” 

assuming that the electric field consists of an incoherent superposition of transverse resonator 
eigenmodes. For this approach, we cannot use so-called “cold resonator modes” [12], but we 
must include aberrations due to temperature dependent modification of the refractive index 
and deformation of the active crystal. These effects are known as thermal lensing, and have a 
major influence on resonator stability and beam quality power [13,14]. 

In the next section we describe how the thermally induced phase distortions are taken into 
account by a Gaussian mode approximation. 

2.2.2 Computation of resonator eigenmodes 

The resonator eigenmodes needed for the “Dynamic Multimode Analysis” can be computed 
by different methods. As already mentioned in the introduction, the most accurate, but 
numerically elaborate, method is a finite element analysis (FEA) [8,9]. This FEA approach 
can take into account aberrations in a general way using the full 3D information about the 
thermally induced distortions of the refractive index and the deformation of the crystal. This 
information can be computed by a finite element analysis of the thermal load and the resulting 
deformation of the crystal. 

However, for this paper we used a much more straightforward method as described in the 
LASCAD program manual [11]. This method uses a FEA for the computation of the thermal 
distortion in combination with a parabolic fit. Such a fit is necessary because an ABCD 
analysis cannot be applied to general refractive index distributions and interfaces. Therefore, 
we approximate the crystal by a set of short Gaussian ducts together with curved interfaces at 
both ends of the crystal. To this end, the crystal is subdivided into short sections along the 
axis, as shown in Fig. 2, and every section is considered to be a Gaussian duct (see Chapter 
20.3 in [2]). 
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Fig. 2. Crystal decomposition in several Gaussian ducts. 

The elements of the ABCD matrices describing each short duct are computed by the use of 
a parabolic fit for the thermally induced refractive index distribution. Similarly, ABCD 
matrices are computed for the deformed end faces of the crystal. In this way it is possible to 
compute an ABCD matrix for the full round trip which takes into account thermal aberrations 
in a good approximation [8]. 

2.2.3 Accounting for anti-reflection coatings in the computation of the energy density 

The ABCD matrix algorithm delivers the transverse shape of the modes. In order to use them 
in the rate equations, it is important to consider how the propagating intensity changes at 
interfaces between different media. Since in laser resonators those interfaces usually are anti-
reflective coated, the Poynting vector passes unchanged. Accounting for the different speed of 

light in the media, this delivers at the interface position 
I

z  

 ( , , , ) ( , , , ),
cryst I cryst out I

t x y z n t x y zρ ρ=   (5) 

where 
cryst
ρ  is the energy density in the crystal, and 

out
ρ  denotes the energy density outside 

the crystal. Thus, by Eq. (5), the energy density is proportional to the refractive index ( )n z  

along the resonator axis. To take this fact into account, let ( , )u x t
�

 be the transversely 

normalized field shape as it is obtained by a standard Gaussian mode analysis. That means 

that the integral of 2| ( , ) |u x t
�

 over the transverse directions equals 1. Then, the energy ( , )t xρ  

can be written as 

 2( ) ( )
( , ) | ( , ) |

eff

t n z
t x u t x

V
ρ ω

Φ
=

� �
ℏ .  (6) 

Here, Eq. (4) is used to compute the effective mode volume
eff

V  by 

 2( ) | ( , ) |  
eff

V n z u t x dx
Ω

= ∫
� �

.  (7) 

Note that the transverse normalization of the field shape ( , )u x t
�

leads to a value 
eff

V  

independent of time. 
Due to the anti-reflection coating, both Eq. (6) and Eq. (7) are proportional to the 

refractive index and not to its square value as in the case of an uncoated interface. Therefore, 
at an anti-reflective coated interface, the transverse electric field is discontinuous which must 
be taken into account in the derivation of rate equations. In the literature, sometimes this fact 
is not considered explicitly [3]. 

2.3 Dynamic Multimode Analysis 

Let us now derive the rate equations of the “Dynamic Multimode Analysis”. For this, we 
rewrite Eq. (2) using Eq. (3) and Eq. (6): 
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 2( ) ( )
( ) ( , ) | ( , ) | ( ) .

a
eff c

t tc
t N t x u t x d x

t V

σ
τΩ

∂Φ Φ
= Φ −

∂ ∫
� � �

  (8) 

To approximate the optical wave in the cavity, a set of orthogonal resonator eigenmodes is 
coupled by space-dependent rate equations. Then, the main model assumptions of the DMA 
are as follows: 

Assumption 1 

Each eigenmode oscillates independently. This has the following consequences: 
 
1. Rate Eq. (8) independently holds for each eigenmode. 
 
2. The optical wave is considered to be an incoherent superposition of the excited 

eigenmodes. Therefore, the overall energy distribution (t, x, y,z)ρ  is obtained as the sum of 

the energy distributions of the individual eigenmodes. 

 
1

( , ) ( , ).
M

i

i

t x t xρ ρ
=

=∑
� �

 (9) 

3. Integrating the above equation and using Eq. (4), we obtain that the overall number of 
photons is given as the sum of the photons oscillating in each eigenmode: 

 
1

( ) ( ).
M

i

i

t t
=

Φ = Φ∑   (10) 

It was explained in [10] that Assumption 1 holds, at least in the sense of a spatial average 
or a temporal mean value. This guarantees correct prediction of the average output power in 
the cw case. Deterioration of laser beam quality due to degenerated mode frequencies and 
coherent mode superposition was discussed in [12] and [15]. According to [12], coherent 
resonances can be avoided in well designed lasers. 

In addition to mode competition, in this paper, we are mainly interested in actively Q-
switched lasers with pulse interval shorter than the thermal relaxation time or in cw lasers. For 
these lasers an analysis of the transient thermal lens shows that one can assume a steady-state 
thermal lens [13,16]. Therefore, we assume the following: 

Assumption 2 

The Gaussian mode shapes ( , ) ( )
i i

u t x u x=
� �

 do not change in time. Therefore the energy 

density 
i
ρ  of the individual modes can be computed by 

 2( ) ( )
( , ) | ( ) |i

i i

eff

t n z
t x u x

V
ρ ω

Φ
=

� �
ℏ .  (11) 

An immediate consequence of Assumption 2 is that any changes of the laser beam shape 
occur due to mode competition. 

Using Eq. (9) and Eq. (11), the stimulated emission ( , )W t x
�

 defined by Eq. (3) can be 

rewritten as 

 ( )2

1

( , ) | |
M

i i

ieff

c
W t x u

V

σ

=

= Φ∑
�

.  (12) 

The above assumptions yield the main equations of the DMA using M modes 

 2
| | ( ) ,

a

i i

i i

eff c

c
N u d x

t V

σ
τΩ

∂Φ Φ
= Φ −

∂ ∫
�

  (13) 
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 ( )2

1

( )
| |

M
tot

i i p

ieff f tot

N NN c N
N u R

t V N

σ
τ=

−∂
= − Φ − +

∂ ∑ ,  (14) 

where 1, ...,i M= . According to Assumption 1, Eq. (13) follows by applying Eq. (8) to each 

eigenmode separately. Equation (14) immediately follows by Eq. (1) and Eq. (12). The overall 
number of photons Φ can be computed by Eq. (10). 

2.4 Numerical discretization 

A time-dependent and 3-dimensional simulation of several Gaussian modes requires the 
numerical discretization of Eq. (13) and Eq. (14). To discretize these equations, we apply a 

finite volume discretization on a finite volume grid of cells 
I

c , where 

 
,

( , , ); , 1, ., 1, ., .;
x y z

I l j k l j m k m= = =   (15) 

Here 
,x y

m  and 
z

m  are the number of grid points in xy − direction and z − direction, 

respectively [17]. The finite volume discretization leads to the following set of ordinary 
differential equations: 

 2
| | ( ) ,

J

i i

i J i
c

Jeff c

c
N u d x

t V

σ
τ

∂Φ Φ
= Φ −

∂ ∑ ∫
�

  (16) 

 ( )2

1

( )
| | ( ) ,I

I

M tot I
cI I

I i i p
c

ieff f tot

N d x NN Nc
N u d x R

t V N

σ
τ=

−∂
= − Φ − +

∂

∫
∑ ∫

�

�
  (17) 

with , , ,I l j k  according to Eq. (15) and 1, ...,i M= . In Eq. (16) and Eq. (17), 

: ( )
I

J
c

N N d x= ∫
�

denotes the approximate integral of the population inversion over the finite 

volume cell 
I

c . The above system of 
2

,
( · )

x y z
m m M+ ordinary differential equations can be 

discretized in time by a suitable stiff discretization scheme [18]. A benefit of Assumption 2 is 
that the thermal analysis and computation of the mode shape only must be carried through 
once. 

2.5 Application to active Q-switching 

Active Q-switching is a common technique to generate short pulses of high energy [2,3,13]. 
The time scheme comprises two different periods which are repeated with a certain frequency. 
In period I, the active material is pumped to a very high level of population inversion. For this 
purpose, the lasing process is prevented by a high intra-cavity loss. 

 

Fig. 3. Time scheme for active Q-switching. 

After the load period, the Q-switch becomes transparent in period II, i.e., the intra-cavity 
loss is reduced significantly, and the high population of the upper laser level is consumed by a 

#114397 - $15.00 USD Received 20 Jul 2009; revised 27 Aug 2009; accepted 6 Sep 2009; published 14 Sep 2009

(C) 2009 OSA 28 September 2009 / Vol. 17,  No. 20 / OPTICS EXPRESS  17309



short and highly energetic laser pulse. For numerical reasons it is useful to subdivide period II 
as shown in Fig. 3. Period IIa contains the laser pulse, and time period IIb is a relaxation 
period without any noticeable output power. Whereas period IIa requires a high numerical 
time resolution, period IIb can be simulated using much larger time steps. 

According to the explanations of the principle of Q-switching given above, we introduce a 

time-dependent Q-switch loss ( )
QS

L t  which results in a time-dependent resonator life-

time ( )
c

tτ : 

 ( )( ) log 1 ,( )tot Res QSL L tt L= − −   (18) 

 ( ) .
( )

 r

c

tot

t
L t

τ
τ =   (19) 

Equation (18) and Eq. (19) allow us to adapt our model for Q-switched lasers without further 
modifications of the rate equations. Now, let us explain the output quantities of our 
simulation, which are used to characterize the laser beam. 

2.6 Computation of output power and beam quality 

Besides the characterization of the pulse shape, output power and beam quality are the main 
information obtained by the “Dynamic Multimode Analysis”. According to [3], the output 

power 
,out i

P  of the i -th mode can be calculated using the photon number 
i

Φ  as follows: 

 ( ),

log( )
( ) ( ),

2

r

out i i

opt

r c
P t t

l
ω

−
= Φℏ   (20) 

 , ,
0

1
( ) ,

T

average i out iP P t dt
T

= ∫   (21) 

where 
r

r  is the reflectivity of the output mirror. By Eq. (20) and Eq. (21), the overall output 

power of the laser is given by 

 
,

( ) ( ),
out out i

i

P t P t=∑   (22) 

 
,

0
.( )

T

average iaverage out

i

P P P t dt==∑ ∫   (23) 

The beam quality of a laser can be characterized by the beam quality factors 
2

/x y
M . Let 

/ ,x y i
p  be the order of th i-th Gaussian mode in x/y-direction. Then, according to [19] and 

using Eq. (22), the beam quality factors 
2

/x y
M  can be calculated by 

 
,2

/ / ,

( )
( ) (2 1) .

( )

out i

x y x y i

i out

P t
M t p

P t
= +∑   (24) 

Equation (24) can be used to obtain the average beam quality factors [2,19] over the 
simulation time T: 

 

2

/
2 0

/

0

( )· ( )
 

( )

T

x y out

x y T

out

M t P t dt
M

P t dt

=
∫

∫
  (25) 
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Note that in Eq. (25) we have to take a weighted mean value of the time-dependent beam 

quality factors to compute the time-averaged beam quality factors 
2

/x y
M  in agreement with 

ISO 11146 measurements [20]. Let us now describe our experimental setup. 

3 Experimental setup 

 

Fig. 4. 3-dimensional view of the absorbed pump power density in the crystal. Absorption 
mainly occurs in the red areas close to the crystal end faces. 

Experimental results were obtained using an actively Q-switched Nd:YAG laser at 

1064nm . The resonator of length 1074
res

l mm= contains a 0.3%  doped slab crystal of length 

26
cryst

l mm= and an output mirror with a reflectivity of 95% . The laser crystal is end-pumped 

by two laser diodes at 805nm  with a pump power between 7W  and 14W  each. The absorbed 

pump power distribution is shown in Fig. 4. The laser is actively Q-switched with a frequency 

of 1kHz  and is designed for pulses of several hundred ns and high pulse stability. With a 

measured beam quality of 2 1.1M < , the Q-switched output beam is almost diffraction 

limited. 

According to the pulse repetition frequency of 1kHz , in our simulations a load period of 

990 sµ and a combined pulse and relaxation period of 1000ns are used (see Fig. 3). For the 

material parameters, well-known values are used [21]. 

4. Results and discussion 

In this section we compare the results of our simulations with experimental data. Figure 5 
shows the output power of a laser pulse as a function of time. The maximum output power 
predicted in this way is helpful to avoid damaging the crystal and other optical elements in the 
cavity. 

 

Fig. 5. Simulated pulse shape in Q-switched mode. 
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In Fig. 6, the average output power, computed by the DMA according to Eq. (23), is 
compared with experimental data. 

 

Fig. 6. Simulated and measured values of average output power in Q-switched mode. 

All output power measurements are time-averaged values of the laser in Q-switched mode. 
As shown in Fig. 6, for low pumping power our simulation overestimates the output power. 

The reason is that we used the same absorption coefficients at 805nm  and 0.3% doping 

density [21] for all our computations. However, in the experiment the laser is optimized for 
high output power and the emitted wavelength of the pump diode decreases for low pump 

power. Due to the sharp absorption spectrum at 805nm the effective absorption efficiency also 

decreases. In our simulation this behavior of the pump diodes is neglected. As a consequence, 
accurate simulation results for high output power and deviations for low output power are 
obtained as expected. Furthermore, the decreasing slope efficiency due to beginning 

instability of the resonator can be noticed in the simulation for 13.9W  pump power per diode. 

For higher pump power, the resonator becomes unstable and does not contain any stable 
Gaussian resonator eigenmodes. 

The dynamic evolution of the laser pulse in Fig. 5 provides information about pulse length 
and symmetry. The pulse length, depending on the pump power, is compared with 
experimental data in Fig. 7. 

 

Fig. 7. Comparison of simulated and measured values of pulse duration (FWHM). 
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In the range of high pump power for which the laser is designed, Fig. 7 shows that the 
simulation slightly overestimates the pulse length, but predicts the correct dependency on the 
pump power. However, for low pump power, we notice a strong increase in the measured 
pulse length. This can be again explained by the behavior of the pump diodes. 

Table 1. To compare the laser beam in cw and Q-switched operation, average values for 
the output power of the resonator eigenmodes, the maximum and averaged overall output 

power, and the beam quality are given. 

 cw mode Q-switched mode 

Paverage [W] 7.78 1.89 

Pmax [W] 293.06 8093.32 

Paverage,00 [W] 2.61 1.89 

Paverage,10 [W] 2.61 3.3 ·10
−10

 

Paverage,01 [W] 2.55 3.1 ·10
−10

 

Paverage,11 [W] 4.1 ·10
−40

 3.3 ·10
−25

 

Paverage,20 [W] 4.3 ·10
−40

 3.3 ·10
−25

 

Paverage,02 [W] 4.3 ·10
−40

 1.4 ·10
−23

 

Paverage,21 [W] 1.7 ·10
−40

 5.2 ·10
−38

 

Paverage,12 [W] 1.7 ·10
−40

 5.0 ·10
−38

 

Paverage,22 [W] 1.2 ·10
−40

 1.5 ·10
−42

 

Mx
2
 1.67 1.0 

My
2
 1.66 1.0 

 
Table 1 shows the simulated output power of each mode in cw and Q-switched operation. 

Furthermore, the time-averaged beam quality factors 
2

,x y
M  computed by Eq. (25) are given. 

The dynamic behavior of output power and beam quality which is needed for Eq. (25) is 
shown in Fig. 8 for cw and in Fig. 9 for Q-switched operation. Note that for the computation 
of time-averaged output power and beam quality in cw mode, we only integrate over the time 
period when the laser has almost reached its steady-state behavior (see Fig. 8). Furthermore, 
note that we chose the same initial value for all considered modes. Therefore, Fig. 8, and Fig. 

9 show a high 2M  value at the beginning. This, however, does not influence the simulation, 
because as soon as the output power increases, the beam shape is determined by mode 
competition. 

According to Table 1, Fig. 8, and Fig. 9, the simulated beam quality factor 2M  is about 
1.7 for cw and 1.0 for Q-switched operation. Thus, the predicted single-mode operation of the 

laser in Q-switched operation agrees with the laser specification of 2 1.1M <  (see Section 3). 
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Fig. 8. Dynamic behavior of output power and beam quality in cw-operation. 

 

Fig. 9. Dynamic behavior of output power and beam quality for Q-switched operation. 

Similar results for output power, pulse energy, and pulse shape can be obtained by an 
analytic model [2,22] or the solution of rate equations with a fixed mode shape [5–7,23]. 
However, DMA additionally computes the beam profile and the beam quality. This is not 
possible by common rate equation models. An interesting result is that DMA correctly 
predicts differences in mode competition for cw and Q-switched operation, which cause 
different beam qualities. 

Let us analyze mode competition for cw and Q-switched operation in more detail. For this 
we use the dynamic 3-dimensional simulation results for beam profile and population 
inversion as shown in Fig. 10 and Fig. 11. 
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Fig. 10. (a) Transverse beam profile in cw operation (Media 1). (b) 3-dimensional view of the 
cw distribution of the population inversion density (Media 2). 

In case of cw operation, Fig. 10(a)(Media 1) shows the dynamic behavior of the laser 
beam and the occurring mode competition. The evolution of the population inversion density 
is shown in Fig. 10(b)(Media 2). Observe that cw operation leads to a smooth transverse 
distribution of the population inversion. Since the fundamental mode does not overlap 
perfectly with the population inversion density, from time to time, higher-order modes are 
needed to consume the population inversion at the peripheral regions. 

 

Fig. 11. Dynamic behavior of the Q-switched laser during the numerical pulse period which is 
denoted as period II in Fig. 3. (a) Transverse beam profile at maximum output power during Q-
switched operation (Media 3). (b) 3-dimensional view of the population inversion density at the 
end of a Q-switch period (Media 4). 

In case of Q-switched operation, Fig. 11(a)(Media 3) shows a short TEM00 pulse. Since 
the laser was pumped far beyond threshold, the strong laser pulse burns a spatial hole into the 
center of the population inversion, which cannot be filled up during the current Q-switch 
period (see Fig. 11(b)(Media 4)). High-order modes would be needed to consume the 
population inversion at the outer regions. However, oscillation of these modes is impeded by 
their overlap with the hole in the center of the population inversion. The first spikes of the 
transient oscillation in Fig. 8 as well as the laser pulse in Fig. 9 show this effect. In cw 
operation, Fig. 8 shows that these spikes are followed by several high-order mode spikes 
before the laser finally reaches its steady state. In Q-switched operation, Fig. 9 shows an 

increasing beam quality factor 2M  at the end of the pulse period. However, before any high-
order modes can gain significant power, the current pulse period ends and the cavity loss is 
increased by the Q-switch again. This leads to the different values for the beam quality given 
in Table 1. 

Figure 12 shows the dynamic behavior of the population inversion. Here, the DMA 
provides useful information about the generated population inversion during the load period. 
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In our case, it can be seen that the upper laser level already begins to saturate before the Q-
switch is opened. 

 

Fig. 12. Dynamic behavior of population inversion. 

On the one hand, this leads to a decrease of the output power due to increased losses by 
fluorescent decay. On the other hand, pumping up to saturation guarantees an almost identical 
population inversion distribution after each load period. This promises excellent pulse 
stability in agreement with our experimental data. Thus, the time-dependent analysis of the 
DMA can help to find a good trade-off between output power and pulse stability. 

5. Conclusion 

We presented a “Dynamic Multimode Analysis” which provides a comprehensive 3-
dimensional simulation tool for solid state laser cavities. Using an eigenmode analysis that 
takes into account thermal aberrations, we could derive an appropriate space-dependent set of 
rate equations to compute shape and dynamic behavior of the laser beam. Comparison with 
experimental data shows that the DMA correctly predicts resonator stability, power output, 
pulse shape, and beam quality for cw lasers as well as for actively Q-switched lasers. It could 
be shown that, due to mode competition, the beam quality is improved by Q-switching. Thus, 
the “Dynamic Multimode Analysis” turns out to be a flexible and powerful new simulation 
tool to improve the design of solid-state laser cavities. 

The combined analysis of different spatial and dynamic effects applied in this paper to 
model Q-switch operation and beam quality allows various generalizations. Modelling of 
apertures, Gaussian output couplers, passive Q-switches, and intra-cavity frequency 
conversion by a “Dynamic Multimode Analysis” will be discussed in subsequent work. 

Acknowledgments 

The first author gratefully acknowledges funding of the Erlangen Graduate School in 
Advanced Optical Technologies (SAOT) by the German National Science Foundation (DFG) 
in the framework of the excellence initiative. The work presented in this paper was supported 
by the InnoNet project SOL of the Federal Ministry of Economics and Technology in 
Germany. 

#114397 - $15.00 USD Received 20 Jul 2009; revised 27 Aug 2009; accepted 6 Sep 2009; published 14 Sep 2009

(C) 2009 OSA 28 September 2009 / Vol. 17,  No. 20 / OPTICS EXPRESS  17316


